รายชื่อหลักสูตร
- Natural Language Processing (NLP)
- Image Processing
- Internet of Things and Robotics
- Data Science
- Signal Processing
- Machine Learning
- Deep Learning
- Mathematics for AI
- Programming and Tools
Natural Language Processing (NLP)
Natural Language Processing (2 Hours)
| ID | Description |
|---|---|
| Module 1 | Introduction to NLP / Text preprocessing / Tokenisation/ Named Entity Recognition |
| Module 2 | Syntax, Grammars and Parsing Techniques |
| Module 3 | Features, Augmented Grammars, and Its Application |
| Module 4 | Parsing Preference/Deterministic Parsing/Lexicalized and Probabilistic Parsing |
| Module 5 | Regular Expression, Morphology and Finite-State Transducers |
| Module 6 | N-gram and Part-of-Speech Tagging/Word Sense Disambiguation |
| Module 7 | Semantics and Logical Form – Linking Syntax and Semantics/ Local Discourse and Reference |
| Module 8 | HMM and Speech Recognition / Applications: Question Answering & Machine Translation |
Machine Translation (3 Hours)
| ID | Description |
|---|---|
| Module 1 | Introduction to Machine Translation |
| Module 2 | Rule-based Machine Translation / Corpus-based Machine Translation |
| Module 3 | Statistical Machine Translation |
| Module 4 | Neural Machine Translation |
| Module 5 | Neural Machine Translation with Attention |
| Module 6 | Transformer for MT |
| Module 7 | Machine Translation Evaluation |
| Module 8 | Data Preparation for MT |
From Linguistics to Formal Grammars (Automata) (3 Hours)
| ID | Description |
|---|---|
| Module 1 | Linguistics as Pattern Observation |
| Module 2 | Formal Language / Chomsky Hierarchy of Formal Grammars |
| Module 3 | Regular Languages |
| Module 4 | Context-Free Language |
| Module 5 | Mildly Context-Sensitive Languages |
| Module 6 | Context-Sensitive |
| Module 7 | Recursively Enumerable Language |
| Module 8 | Pumping Lemmas |
Text Processing & BERT
Question & Ansering Thai BERT (5 Hours)
| ID | Description |
|---|---|
| Module 1 | NLP Transformer |
| Module 2 | Feature Representation / Sequence Models and Seq2Seq Model |
| Module 3 | Encoder and Decoder Performance / Inside Encoder and Decoder |
| Module 4 | GPT-1/ BERT: Theory / Task Specific Methods / Practical / Fine Tuning |
| Module 5 | Other Transformer-based Models and GPT-2 |
| Module 6 | Introduction to BERT / BERT for QA Model and Huggingface / Tokenization and Pipeline |
| Module 7 | Text Classification with Wongnai Dataset |
| Module 8 | Text Classification with Custom Dataset / Thai Automatic Question Answering |
Web Scraping and Document Classification (3 Hours)
| ID | Description |
|---|---|
| Module 1 | Overview Web Scraping |
| Module 2 | Basic HTML Document and Web Scraping |
| Module 3 | Regular Expressions with Python |
| Module 4 | Document Classification |
| Module 5 | Preprocessing and Problems |
| Module 6 | Topic Modeling and Tag Suggestion |
| Module 7 | Phishing Web Detection and Sentiment Analysis |
| Module 8 | Document Classification Workshop |
Image Processing
Introduction and Advanced Image processing (3 Hours)
| ID | Description |
|---|---|
| Module 1 | Basic image processing Color, Light, and Image Formation |
| Module 2 | Convolution / Image Gradient / Corner Detection / SIFT |
| Module 3 | Histogram Equalization |
| Module 4 | Integral Image |
| Module 5 | Local Intensity Distribution Equalization (LIDE) |
| Module 6 | Maximum Likelihood |
| Module 7 | Mixture Model |
| Module 8 | Pixel Sorting |
Computer vision (2 Hours)
| ID | Description |
|---|---|
| Module 1 | What is Computer Vision |
| Module 2 | Mathematics for Computer Vision |
| Module 3 | Filters, Contrast, Transformation, and Morphology |
| Module 4 | Image restoration, Sizing, Noise, Segmentation, and Contours |
| Module 5 | Color Detection / Background Subtraction: With Background / |
| Module 6 | Adding Noises / Background Subtraction: Without Background |
| Module 7 | Line Sensor / Perspective Transform |
| Module 8 | Example of Computer Vision |
Introduction to Point Cloud (Digital Geometry Processing) (2 Hours)
| ID | Description |
|---|---|
| Module 1 | Introduction of Point Cloud |
| Module 2 | How is Point Cloud Generated |
| Module 3 | What Format is Point Cloud Stored |
| Module 4 | Point Cloud Processing: Registration and Keypoints |
| Module 5 | Feature Descriptors |
| Module 6 | Correspondences Estimation |
| Module 7 | Transformation Estimation |
| Module 8 | Applications and Tools |
Introduction to Point Cloud (2D-3D Reconstruction) (3 Hours)
| ID | Description |
|---|---|
| Module 1 | Point Cloud Registration / 2D to 3D Registration |
| Module 2 | Camera and object motion tracking |
| Module 3 | Feature Extraction and Matching |
| Module 4 | 2D to 3D Reconstruction and Surface Reconstruction |
| Module 5 | Explicit and Implicit Surface |
| Module 6 | 2D to 3D Reconstruction and Vanilla ICP |
| Module 7 | Normalization Depth and World Origin |
| Module 8 | Tools and Pytorch 3D / 3D Machine Learning, 3D Dataset and ABC / VoxelNet and Geometric Deep learning |
Introduction to Point Cloud (3D Deep Learning and PointNet) (2 Hours)
| ID | Description |
|---|---|
| Module 1 | Introduction 3D Deep Learning and voxel-based |
| Module 2 | Point-based and Graph-based |
| Module 3 | Point Net – Introduction and Input / Embedding Space, OOS and Result |
| Module 4 | Generating Mesh-based Shapes From learned latent of Point Cloud with VAE-GAN |
| Module 5 | Point Attention Network for Gesture Recognition Using Point Cloud Data |
| Module 6 | Gather, Scatter, and Mesh base / Keypoint 3D and VAE-GAN |
| Module 7 | Library Installation and Data Processing / Pytorch-geometric Concept, Data Loader and Model Function / Create Dataset Using Pytorch |
| Module 8 | Model Deployment / Dynamic Graph CNN for Learning on Point Clouds Model / Message Passing Networks |
Internet of Things and Robotics
Arm Robotics and Robot Kinematics (6 Hours)
| ID | Description |
|---|---|
| Module 1 | Introduction to Robotics / The basic principles of robotics |
| Module 2 | Robot Types |
| Module 3 | Introduction to Robot Mechanics |
| Module 4 | Robot Controller |
| Module 5 | Sensors and actuators |
| Module 6 | Overview Introduction to Robot Kinematics |
| Module 7 | The Fundamental Concepts of Kinematics |
| Module 8 | Notation and Matrix Representation |
Introduction and Advanced Internet of Things (6 Hours)
| ID | Description |
|---|---|
| Module 1 | Smart IoT Device / IoT Introduction & Computing System / The Internet of Things |
| Module 2 | IoT Components / IoT & AIoT Concept / Embedded Board & Programming Languages |
| Module 3 | Arduino Introduction / Basic I/O / Simulator – Digital Input-Output / Analog (Input, Output) |
| Module 4 | IoT Connectivity / IoT Application |
| Module 5 | Tool and Supplements / IoT Network Protocol |
| Module 6 | Setup Docker Desktop / Case Study: Temp/Humid Monitoring and Control |
| Module 7 | Node-RED Simulation / Node-RED Brain Process |
| Module 8 | Databases / Grafana |
Data Science
Finance on Reinforcement Learning (2 Hours)
| ID | Description |
|---|---|
| Module 1 | Introduction Machine Learning in Finance |
| Module 2 | Reinforcement Learning (RL) Concept |
| Module 3 | Markov Decision Process (MDP), Task, Value Functions, and Optimum Policy |
| Module 4 | How to solve RL Problem (Dynamic Programing) |
| Module 5 | Q-Learning |
| Module 6 | Policy Gradient RL |
| Module 7 | Rewards & BackTest |
| Module 8 | RL Architecture and Other RL |
Stock Manipulation (2 Hours)
| ID | Description |
|---|---|
| Module 1 | Introduction Recurrent Neural Network (RNN) – Introduction RNN |
| Module 2 | RNN, Type of RNN and Applications |
| Module 3 | Backpropagation Through Time(BPTT) and Long Short Term Memory(LSTM) |
| Module 4 | Activity: understand how RNN works? |
| Module 5 | Word2Vec Model, Language Translation and Problem |
| Module 6 | Attention Mechanism(Self-Attention) |
| Module 7 | Transformer / Detection of Stock Manipulation |
| Module 8 | Machine Learning for Manipulation Detection |
Signal Processing
Automatic Speech Recognition (ASR) (4 Hours)
| ID | Description |
|---|---|
| Module 1 | Introduction to Automatic Speech Recognition |
| Module 2 | Speech recognizer |
| Module 3 | ASR Technique and Partii Demo |
| Module 4 | Basic structure ASR System |
| Module 5 | KALDI – Introduction |
| Module 6 | Example script – common voice |
| Module 7 | Data preparation: Thai syllable system |
| Module 8 | Language model preparation |
Machine Learning
Machine Learning (6 Hours)
| ID | Description |
|---|---|
| Module 1 | Introduction of Machine Learning |
| Module 2 | Pre-machine learning: rule-base/ Supervised Learning/ Unsupervised Learning / Linear Regression: Loss Function |
| Module 3 | Evaluation, Labeling, Matrics, and Error / K-means Clustering and KNN Classification |
| Module 4 | The centroid for Cosine Similarity / Selecting-K, Variance and Hierarchical Clustering |
| Module 5 | Other Flavors of Supervision and Reinforcement Learning / self-supervised |
| Module 6 | Model Selection and Literature Review / My Personal Picks (Regression, KNN, XGboost, DL) |
| Module 7 | Data size and Class Imbalance |
| Module 8 | Bias, Variance and Double Descent Problem / Diagnosis |
Advanced Machine Learning (2 Hours)
| ID | Description |
|---|---|
| Module 1 | SVM and Kernel Methods |
| Module 2 | Kernel Function / Dual and Kernel Perceptron |
| Module 3 | Margin and Generalization |
| Module 4 | Dual Problem |
| Module 5 | Maximum Margin Classifier |
| Module 6 | Support Vector Machine(SVM) |
| Module 7 | Kernel Principal Component Analysis (PCA) |
| Module 8 | Fancy Kernel |
Ensemble Method (1 Hours)
| ID | Description |
|---|---|
| Module 1 | Introduction to Ensemble Method |
| Module 2 | Bagging Method |
| Module 3 | Decision Tree and Random Forest |
| Module 4 | Splitting Strategy |
| Module 5 | Training Model |
| Module 6 | Prediction and Evaluation |
One-Class Classification (3 Hours)
| ID | Description |
|---|---|
| Module 1 | Introduction and Anomaly Detection |
| Module 2 | Outlier |
| Module 3 | Overview One-Class Classification |
| Module 4 | Structure One-Class Classification |
| Module 5 | None One-Class Support Vector Machine |
| Module 6 | Generative Adversarial Network (GAN) |
| Module 7 | Deep One-Class Classification |
| Module 8 | Applications: Example 1-4 and Conclusion |
Pricipal Component Analysis (PCA) (3 Hours)
| ID | Description |
|---|---|
| Module 1 | Matrix and Vector |
| Module 2 | Subspace Projection and Variance |
| Module 3 | Principal Component Analysis (PCA) / Lagrangian |
| Module 4 | PCA Axes Selection / PCA Algorithm and Reconstruction Error |
| Module 5 | Eigen-Decomposition: Jacobi Method |
| Module 6 | PCA: For Small and Large Sample Size Data |
| Module 7 | Kernel PCA (KPCA) / Kernel Trick and Summary of KPCA / How to Apply KPCA to Set of 10,000 Vectors |
| Module 8 | Related Techniques |
Deep Learning
Introduction Deep Learning (5 Hours)
| ID | Description |
|---|---|
| Module 1 | Introduction to TensorFlow |
| Module 2 | Overview of Neural Networks |
| Module 3 | Loss Function / Back Propagation / Activation Functions |
| Module 4 | Tensor Operations / Linear and Nonlinear Regression |
| Module 5 | Deep Learning and MNIST Dataset / One-Hot Encoder and Muti-Layer Perceptron (MLP) |
| Module 6 | 2D Discrete Cross-correlation / Convolutional Neural Network (CNN) / 2D Convolutional layer / The First CNN: LeNet5 |
| Module 7 | Transfer Learning and Example Transfer Learning |
| Module 8 | Deeper Network: VGG, Adam and Example VGG16 |
Advanced Deep Learning (4 Hours)
| ID | Description |
|---|---|
| Module 1 | Transfer learning – VGG16 |
| Module 2 | Autoencoder Feature Extraction and Encoder, Reconstructor and Combine feature |
| Module 3 | Autoencoder: Convolutional Neural Network (CNN) UpSampling 2D and Denoising |
| Module 4 | Semantic Segmentation (SegNet) Batch Normalization / Lung Sementation (SegNet) U-Net and Dropout / Residual Neural Network (ResNet) |
| Module 5 | CIFAR – 10 (Datasets) / Traditional |
| Module 6 | Generative Adversarial Networks (GANs) / Super Resolution GAN (SRGAN) |
| Module 7 | Audio (STFT, MFCC) Example Audio Recognition (CNN) |
| Module 8 | Time series, Simple NN Example Stock Prediction |
| Module 9 | Text: Feature Extraction Word2Vec, RNN, and LSTM |
| Module 10 | Example: Colab Code Audio, Time serial, and Text |
Mathematics for AI
Introduction Mathematics for AI (3 Hours)
| ID | Description |
|---|---|
| Module 1 | Machine Learning Introduction |
| Module 2 | Linear Algebra: Vector and Matrix |
| Module 3 | Linear Algebra : Transformation & Determinant |
| Module 4 | Linear Algebra: Eigenvectors |
| Module 5 | Linear Algebra: Singular Value Decomposition (SVD) |
| Module 6 | Probability: Basics of Probability and Weighted and Unweighted |
| Module 7 | Calculus: Differential and Integral |
| Module 8 | Statistical |
Advanced Mathematics for AI (2 Hours)
| ID | Description |
|---|---|
| Module 1 | Features |
| Module 2 | Loss Function |
| Module 3 | Binary Cross-Entropy Loss |
| Module 4 | Maximum Likelihood |
| Module 5 | Linear Classifier |
| Module 6 | Multinomial Model |
| Module 7 | High Dimensional Data |
Programming and Tools
Basic of Python Programming (2 Hours)
| ID | Description |
|---|---|
| Module 1 | Python Setup / Fundamental Data Types / Comparison and Logical Operators |
| Module 2 | Control Flow Statements / IF-Then Statements |
| Module 3 | Loops |
| Module 4 | Built-in Python Expressions / Functions |
| Module 5 | Classes & Objects |
| Module 6 | Import Library |
| Module 7 | Inputs and Outputs |
| Module 8 | Files |
Introduction to Linux (2 Hours)
| ID | Description |
|---|---|
| Module 1 | Linux Structure and Installation |
| Module 2 | User Environment/ Text Editors/ Command-line Operations |
| Module 3 | Local Security Principles / Network Operations |
| Module 4 | Manipulating Text / Bash Shell Scripting / Advanced Bash Shell Scripting |
| Module 5 | Processes |
| Module 6 | Finding Linux Documentation |
| Module 7 | File Operations |
| Module 8 | Common Applications |
Introduction to Kaggle (30 Minutes)
| ID | Description |
|---|---|
| Module 1 | Introduction to Kaggle |
| Module 2 | Advanced to Kaggle |
| Module 3 | Competition to Kaggle |
| Module 4 | Kaggle Hands-on |
Introduction to Google Colab (1 Hours)
| ID | Description |
|---|---|
| Module 1 | Introduction to Google Colab |
| Module 2 | Google Colab Tour |
| Module 3 | Basic Uses |
| Module 4 | Advanced Uses and Conclusion |
| Module 5 | Google Colab Hands-on |
Introduction to GitHub (1 Hours)
| ID | Description |
|---|---|
| Module 1 | Introduction to GitHub and Version Control (Including Git installation) |
| Module 2 | Text Editor and Extension |
| Module 3 | Git Using in Project and Basic Commands |
| Module 4 | Branch |
| Module 5 | Github Registration and Authentication |
| Module 6 | Github Repository Management |
Microservices and Docker Compose (4 Hours)
| ID | Description |
|---|---|
| Module 1 | Introduction Microservice / Microservice as RESTful APIs / API Gateway |
| Module 2 | Event-driven Communication, Secure Microservices, Data Management, Event Communication |
| Module 3 | Success Factor and Grafana |
| Module 4 | Introduction to Docker, Build and Run |
| Module 5 | Old Style Deploy, The Matrix of Hell, Container Isolation, Glossary |
| Module 6 | Install Docker, Command, and Network |
| Module 7 | Docker Image / Docker-compose / Services / Networks, Volumes, Docker-compose |
| Module 8 | Example and Showcase of Docker-compose |
Introduction to Docker (2 Hours)
| ID | Description |
|---|---|
| Module 1 | Introduction Microservice / Microservice as RESTful APIs / API Gateway |
| Module 2 | Event-driven Communication, Secure Microservices, Data Management, Event Communication |
| Module 3 | Success Factor and Grafana |
| Module 4 | Introduction to Docker, Build and Run |
| Module 5 | Old Style Deploy, The Matrix of Hell, Container Isolation, Glossary |
| Module 6 | Install Docker, Command, and Network |
| Module 7 | Docker Image / Docker-compose / Services / Networks, Volumes, Docker-compose |
| Module 8 | Example and Showcase of Docker-compose |
Introduction to Deployment (2 Hours)
| ID | Description |
|---|---|
| Module 1 | Introduction to Application Programming Interface (API) and Deployment |
| Module 2 | API Development with Python and Flask |
| Module 3 | Machine Learning Model with Python |
| Module 4 | Machine learning as a Service Development with API |
| Module 5 | Testing API with Postman |
